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A Berry-Esseen bound of order n'% is established for linear
combinations of order statistics. The theorem extends pre-
vious results for the case of bounded weights to a class

of L-statistics with unbounded weight functions.

1. INTRODUCTION AND RESULT

Let X1,X2,...,Xn be independent random variables (r.v.) with common distribution
function (df) F and let Xl:n <...% Xn:n be the corresponding order statistics. Let
J be a fixed real-valued weight function on (0,1). We consider L-statistics (or
Tinear combinations of order statistics) of the form:

i/n

n
(1.1) T = igl j J(s)ds X,
it
Let n
(1.2) Fr(x) = P(Trsx)  for - = < x <
where .
(1.3) T = (T,E(T,))/a(T,).

In the past decade there has been considerable interest into the asymptotic dis-
tribution theory for L-statistics. It is well-known that T: ts asymptotically
normally distributed under quite general conditions. A survey of such results was
given by Serfling (1980). We also refer to a recent paper of Mason (1981), which
contains the best result so far obtained in this area.

More recently attention has been paid to the problem of establishing Berry-Esseen
bounds for L-statistics. We mention the work of Bjerve (1977), Helmers (1977,1981,
1982), Serfling (1980) and van Zwet (1983). These authors obtained Berry-Esseen
bounds for L-statistics for the case of bounded weights. The purpose of this paper
is to derive a Berry-Esseen bound for L-statistics with unbounded weight functions.
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Let ¢ denote the standard normal df and define F'1 by
F'l(s) = inf{x:F(x) 2 s} for 0 < s < 1.

THEOREM 1. Suppose there exists rumbers § > 0, ¢ > 0 and K > 0 such that

(1) the function J satisfies a Lipschitz condition of order 1 on [e,l-el, whereas
on neighbourhoods (0,e) and (1-€,1) of zero and one, J is twice differentiable
with second derivative J", satisfying

(1.4) 19%(s)| = KCs(1-5)1"2

(11) the irwerse F* satisfies

(1.5) Fls) ] < K(s(1-s)) 3 fom 0 < s < 1

. -1 -1 G+ e

(1.6) |F (sl)—F (sz)i < Klsl—szl[(sl(l—sl)) +(52(1-52)) ]
For 0 < 51,5, < £ and 1w < 51,5 < 1. Then 62(3.F) > 0 where

(1.7) OZ(J:F) = j J J(F(x))I(F(y)) (F(min(x,y))-F(x)F(y))dxdy
implies that o

(1.8) sgplF:(x) - 8(x)]| = O(n—%), as n > w.

The theorem allows weight functions J tending to infinity in the neighbourhood
of 0 and 1 at a logarithmic rate. An example is provided by the weight function
¢'1, the normal quantile function. Then Tn is an asymptotically efficient L~
estimator of normal scale.

Our method of proof resembles those of van Zwet (1977) and Does (1982) as these
authors also combine smoothing techniques with appropriate conditioning arguments.

In section 2 we prove the theorem. The proofs of a number of lemmas are omitted,
but these may be found in Helmers & Hufkova (1984).

2. PROOF

Let, for any n = 1, (U1~n""’Un'n) denote the order statistics corresponding

to a sample of size n from the uniform distribution on (0,1). For any integer

1 <m<(enl, TetV = (Vl:m-l""’vm—lzm-l)’ Z-= (len-Zm""’Zn-Zm:n-Zm) and

W= (wl'm—l""’wm—l'm-l) be vectors of order statistics corresponding to samples
of sizes m-1, n-2m, and m-1 from the uniform distribution on (0,1) and let
V,Zand W, Upens @nd Uy iy, De independent. Then the joint distribution of
(Ulzn""’un-n) is the same as that of

(2.1) Um:n vl:m—l""’Um:n v

in

U

m-1:m-1°"m:n’
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(Un-m+1:n-Um:n)ZI:n—2m + Um:n""’(Un~m+1:n-qn:n)zn-Zm:n-Zm +
* Unine Un—m+1:n’(1-Un-m+1:n)wlzm—l U el
(I_Un-m+1:n)wm—1:m-1 * U melen.

Since the joint distribution of Xi~n’ i=1,...,n is the same as that of

FU(U;.)» 1 = 1,....n it follows directly from (2.1) that the distribution of
Tn (cf.(1.1)) can be identified with that of

m/n
-1
(2.2) T U ) + j J(s)ds Fo(Upp) * Ton(UnnoUnmenn)
n-1
n-m+1 n
n -1
+ j is)ds £ (Un-m+1:n) * T3n(Un-m+1:n)
n-m
n
where i
m-1 ? -1
(2.3) Tln(Um:n) = 2 J J(s)ds F (V'I :m-lUm:n)
i=1 .
i-1
" i+m
n-2m -1
(2.4) TonUninYnoma1zn) = 'Zl f Js)es- B2 ineom
= im-1
n
(Upeme1 :nUnin) *nin)
and ian-m+l
m-1 " -1
(2.5) TanWpome1on) = igl I(s)ds Fo(Wy o 1 (1-U ) Ui neten) -
T i4n-m
n

Clearly, the r.v.'s Tln(Um:n)’TZn(Um:n’Un~m+1:n) and T3n(U
1y independent, conditionally given Um'n = yand U

n-m+l:n
n-ml:n =V for any
0 <u=<v<1l. This fact will be crucial in what follows.

Define, for Mes < E;E’ the function y_ by
n n n

n-m n-

n-m
i)y - G )

n

E

(2.6) vp(s) = Jly)dy

0 —

3|3 u—-ssl

and note that v () =y (D:E =0. letr denote the empirical df based on
‘n'n ntn -1 R:Zm (Zi)

ZpseensZy ons Tee. T o0 (s) = (n-2m) 2i=% I(O,s) for 0 < s < 1, where

Zl""’zn-Zm are independent uniform (0,1) r.v.'s corresponding to the order

) are conditional-
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statistics Zl:n—Zm""’Zn—Zm:n-Zm' Here and elsewhere IAS.) denotes the indicator
of a set A. For any r.v. X, with 0 < o(X) < =, we write X for X-EX and X~ for
(X-EX) /o (X).

Similarly as in Helmers (1981;1982) we can write

(2.7) TonUn:n Yn-mern) =

1
f ¥n ( + I 2 Tp- Zm(s))d P Un:n* (U -m+1:n Ve n)s) *
0

n-m
-1 " wam g n

+(n=2m)™ T P U V) D) [ J(y)dy.
- i=1 n
n

To proceed we note that, as J is Lipschitz of order 1 on [e,1-e] (cf. assumption
(1)), we can approximate T, from above and below for sufficiently large n by
r.v.'s T, . and T, defined by

(2.8) 2n+(Um n*Yn-me1on) =
1
- m n -2m n- Zm - n- 2m
[ @ B g L D () s A )
0

+ 2 L(Eﬂ) (Fn_zm(s)'s)z I[E,l'ﬁ] (S)

P2 () P @ B2 00,e)u(1-¢,1) (5)
# T 3r (8)-9) @+ B (i (1a)r, L, (5)).

-1
I(O,g)u(l—g,l)(s)}d F o Unnt (Vo m1n “Un:n )s)
n-m

- hz2Zm g
+ (n-2m) 121 R (U (T N Upen) d(y

|3‘~—~s:|

where L is the Lipschitz constant and 1 a random point in [0,1]; i.e.

(2.9) TZ (Lm n’Un m+1:n) < T2n(Um:n’Un~m+1:n) = T2n+(Um:n’Un-m+1:n)'

Define (cf.(2.2))

(2.10) Tt = T * Tons (Unne Yot ) TonCUnin > Unomesn) -

2nt
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In the following lemma we relate T: with T;+ and T;_ (cf. Helmers(1981);(1982)
for a similar approach). e

LEMMA 2.1. If the assumptions of Theorem 1 are satisfied, then

(2.11) P(Trsx) < P(T:_sxn+)

and

*
(2.12) P(T;sx) 2 P(T, =)

for appropriate sequences Xpgs N = 1,2,... and x n=1,2,... satisfying

(2.13)  x, = x(140(n"3))s0(n7?)

uniformly in X.
PROOF. See Helmers & Hufkova (1984). 0O

In view of Lemma 2.1 it obviously suffices to show
(2.18)  sup|P(T" <x)-0(x)= 0(n"})
X —

instead of (1.8). To prove (2.14) we show that for some sufficiently small vy > 0

2
(2.15) t17H 7 (1) -e7EE jat = o(n?)
[t]<nY -
and
(2.16) [tl'llo;+(t)ldt - oY),
nY<|t|sn% -

where p;+ denotes the characteristic function (ch.f) of T:+‘ An application of
Esseen's smoothing lemma (see, e.g., Feller (1971), p.538)"will then complete
the proof of (2.14).

We first prove (2.15). To start with we note that (2.1)-(2.5) and the remark
following (2.5) directly yields

(2.17)  oX.(t) = ELo* (t) o (t) o7 (t)
nt T1nUnin) TZni(Um:n’Un—m+1:n) T30 Unona1on)
S, -1
exp(ito, (E(T, IU . WU 0. ) -ET, )]
where 0§+ = oZ(Tni) and, for any r.v. X with E[X| < =,
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-1
(2.18) ay(t) = Elexp(ito ; (-EXIU .U o)) Wi Ynemetin) -

Note that the expression within square brackets in (2.17) is precisely equal to
ey * .

the conditional ch.f. of T"if where the conditioning is on Unen and Un—m+1:n'

The expectation operator E in (2.17) refers to the expected value taken w.r.t.

(Um:n’Un-m+l:n)'

We continue with the analysis of p;+(t). In the next lemma we derive asymptotic
approximations for the first and third factor within square brackets in (2.17);
i.e. for ¢ t) and ¢ t) for 0 < u d 1- 1

r ¢T1n(“)( ) ¢T3n(v)( ) for 0 < u < ¢ and l-e < v <

LEMMA 2.2. If the assumptions of Theorem l are satisfied, then for any real
tand 0 < u < ¢

(2.19) l¢§1n(u)(t) -1t o2 GH (T (u)] =

= 0 2(10gn) 313 y3/H38,3/2)

and

(2.20)  G*(T) (u)) = O(n"%(logn)? u"E*%m) .
The relations (2.19) and (2.20) remain valid if we replace Tln(u) by T3n(v)
and u by l-v.

PROOF. See Helmers & Huskovad (1984). 0O

We also need an asymptotic approximation for ¢;2 (U V)(t) for O<u<e,l-eg<v<l.
n ]

Note that r.v. Sn(u,v) appearing in the following~lemma corresponds to the

leading term in the stochastic expansion (2.8), conditional on Um'n = u and

Upeme1on = V-

LEMMA 2.3. If the asswmptions of Theorem 1 are satisfied, then for any

[t s n®and 0 <l <&, 1-e < v < 1.

(@2.21) ey (0 - exp(-3t%s72 o%(S (u,v)))]
= o(n 2 (2411 3)exp(- %—tzc;icz(sn(u,v)))

M E ) 2 FE B R e 0 Y +1ir N 1))

where
1
(2.22) S (u.v) = - (22 j ML LISTR

- - (s)—s)dF'l(u+(v—u)s).
.0

n-2m
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PROOF. Taylor expanding the ch.f. of T2 (u v) yields for any t and 0 < u < v <1

*
(2.23) ¢T2n (u, v)(t) = E[exp{1tcn+ n

t%72 S (0w +1tls ]y EIR (0.

(u,v)}(1+1'ton+ Qn(u,v))]+

Here S, is defined in (2.22), whereas Qn and Rn are the quadratic and third order
terms in (2.8). Exploiting the von-Mises statistic structure of Qn(u,v) and
employing a bound for large deviation probabilities for the empirical df, due to
Lai (1975), p.827, for the estimation of ElR (u,v)] we arrive at (2.21). For
details of the proof see Helmers & Hugkova (1984). a

To deal with the fourth factor within square brackets in (2.17) it will be con-
venient to have

LEMMA 2.4. If the assumptions of Theorem 1 wre satisfied, then

3
(2.24) ElE(TnilUm:n’Un-m+l:n)’ETniJ I(O,e)(Um:n)I(1-5,1)(Un-m+l:n)

O(n_3/2(%)3/4+35 3

(Togn)™).

PROOF. See Helmers & Hu$kova (1984).0

We are now in a position to complete the proof of (2.15). Take m = [n1/33.
Application of an exponential bound for uniform order statistics (see, e.g.,
Lemma A2.1 of Albers, Bickel and van Zwet (1976)) yields

*

itT

(2.25) j LF’~1|°:i(t) -fe M (0 e)(U :n)I(l—e,l)(Un-m+1:n)|dt
[tisn
= O(n'%).

Also we obtain with the aid of Theorem 1 of Mason (1981) that

(2.26) 0 < Tim o, = o*(4,F) <

e -
Using (2.17), (2.26) and the Lemma's 2.2, 2.3 and 2.4 we find after some elemen-
tary computations for all |t| < n' for some sufficiently small y > 0

2
(2.27) |Ee "~ I(O,e)(Um:n)I(l—e,l)(Un-m+1:n) - e B l

s 160 (137,207 (T (U ) U ) (147

2 2 22
g (T3n(Un-m+1:n)|Un—m+1 n)XEXP( it c’n+° (Sn(um:In’un—m+1:n)))I

. 2
Um:n’Un—m+1:n) (1+1t(E(TniJUm:n’Un-m+1:n) - it

(E(T;ilum:n’un-m+1:n))z)I(O,e)(Um:n)I(1-5,1)(Un—m+1:n)]
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2
- (i denn(- § ) + onH ).

Combining now (2.25) through (2.27) we arrive after some calculations involving
conditional moments (cf. Helmers & HuSkova (1984)) at (2.15).

Next we prove (2.16). Take m = [3en]. Using (2.17) once more we find for all
[t] <

(2.28)  lop(ull BTy Ly ()
- - n

Clearly T2 +(u v) is the sum of a non degenerate U-statistic of degree 2 with a
kernel, which is bounded by C(|F~ ( YI+IF™ (v)l) for some constant C > 0, and a
remainder term satisfying Ean( ,v)I = 0(n 3/2(IF (u)1+IF 1( v)1)). Hence the
argument given in Helmers and van Zwet (1982), p.504-505, cf. their relation (3.1Q
can essentially be repeated to find that for some sufficiently small v > 0

2nt

(2.29) J 1617 oy, (£ 14t <
n¥<|tlsn -
-1 *
< J [t]™" Ele (t)ldt
n'<|t|<n T2n+(Um :n’ n m+1:n)
_ -4 -1 3,1 3
= 0(n 2ELIF (U JUHIF (U ) 1
¥ (F—l(um:n))2 * (F_l(un-m+1:n))2 * (lF-l(Um:n)‘ *
-1
+IF (Un—m+1:n)‘)])
- o(n"3)

which proves (2.16). This completes the proof of Theorem 1.
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